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Convection in a box: linear theory 
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(Received 2 May 1967) 

The linear stability of a quiescent, three-dimensional rectangular box of fluid 
heated from below is considered. It is found that finite rolls (cells with two 
non-zero velocity components dependent on all three spatial variables) with axes 
parallel to the shorter side are predicted. When the depth is the shortest dimen- 
sion, the cross-sections of these finite rolls are near-square, but otherwise (in 
wafer-shaped boxes) narrower cells appear. The value of the critical Rayleigh 
number and preferred wave-number (number of finite rolls) for a given size 
box is determined for boxes with horizontal dimensions h, B < h/d < 6, where d 
is the depth. 

1. Introduction 
There has been much recent interest in the understanding of cellular convec- 

tion. In  particular, much of this work has been directed toward the prediction 
of the preferred mode (cell shape) of convective cells after the onset of convection 
(Segel & Stuart 1962; Schluter, Lortz & Busse 1965). The model generally used 
consists of a thin, horizontal fluid layer, infinite in horizontal extent and heated 
from below. The analyses of the governing equations aim at resolving the doubly 
infinitely degenerate spectrum of wave-numbers, which is allowable by the linear- 
ized equations, into a preferred one (only one appears to be present in experi- 
ments) through non-linear selection. It seems, however, as though these theories 
are not comparable with experiments, since the necessary lateral confining 
walls make their presence felt by not allowing non-linear selection to manifest 
itself by the array of hexagonal cells predicted (in an interval about the critical 
Rayleigh number) by the non-linear theories. These predictions of hexagons 
depend on any of several small parameters such as measures of fluid property 
variation with temperature and deflexion of free surfaces (Davis & Segel 1965). 
Instead, roll cells of geometrical shape similar to that of the confining container 
seem to appear (Koschmieder 1966) in the right circular cylinder and the rect- 
angular parallelpiped, the influence of the lateral boundaries dominating over the 
small aforementioned effects. 

The purpose of this study is to determine the influence of lateral walls on the 
convective process in a rectangular box (cylinder). Previous attention to this 
problem has been paid by Pellew & Southwell (1940), Zierep (1963), and Ostrach 

f Present address: Department of Mathematics, Imperial College, London S.W. 7, 
England. 
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& Pnueli (1963). Zierep and Pellew & Southwell recognized that the presence of 
rigid lateral walls makes separation of variables impossible (all of the boundary 
conditions on the vertical walls cannot be satisfied), and so they considered 
idealized ‘slip walls’. Ostrach & Pnueli obtained a sixth-order linear partial 
differential for the vertical velocity w with the boundary conditions w = awl& = 

A2w = 0 on all boundaries. On vertical walls, however, the condition aw/az = 0 is 
redundant, while no heed was taken of the fact that the horizontal velocity 
components must also vanish there. Separation of variables was used to obtain 
critical Rayleigh numbers which are insensitive to these latter conditions. Hence 
Ostrach & Pnueli’s numbers are incorrect and predictably lie between R, = 1708, 
the value for the infinite layer, and our results, where the boundary conditions 
are correct and hence more severely restrict the eigenfunctions. 

It is to be expected that since the linear stability problem is to be solved in a 
closed and bounded domain, the spectrum of allowable wave-numbers will be 
denumerable corresponding to multiples of the horizontal dimensions. A Galer- 
kin procedure is used to obtain approximate critical Rayleigh numbers (upper 
bounds) whose corresponding approximate eigenfunctions satisfy all boundary 
conditions and continuity exactly. This last condition ensures that implicit 
boundary conditions such as aw/& = 0 on horizontal boundaries are satisfied. 

The results obtained for boxes with width to depth ratios h/d in the range 
< h/d < 6 are the following. 
(i) The preferred mode is always some number of finite rolls (two non-zero 

velocity components dependent on three spatial variables) with axes parallel 
to the short side (square boxes excepted). 

(ii) When the depth is the smallest dimension, finite rolls of near-square cross- 
section are predicted. Otherwise narrower finite rolls appear. 

(iii) The critical Rayleigh number decreases rapidly to the value 1708 as the 
horizontal dimensions increase so that most experiments, which use thin layers, 
would appear to have onset occur at about R, = 1708. 

(iv) A diagram (figure 13) is presented which makes it possible, when the hori- 
zontal dimensions of the box are known, to determine R, and the preferred mode 
according to linear theory. 

2. Formulation of the problem 
We shall use the following notation and dimensionless variables: d is the dis- 

tance between the horizontal boundaries of a rectangular box which encloses a 
fluid of mean density po; g is the acceleration of gravity (taken to act vertically 
downward); and a, v and K are the constant coefficients of thermal expansion, 
kinematic viscosity and thermal diffusivity, respectively. The dimensionless 
horizontal co-ordinates x and y, respective horizontal dimensions h, and h,, and 
vertical co-ordinate z refer to the length d. The velocityV = (u, v, w), temperature 
T ,  time t and pressure p refer to the scales qo = [a(AT) g d ~ / u ] + ,  AT, d2 /K  and 
p o  uq,/d, respectively. Here AT is the temperature difference between top and 
bottom. We use the Boussinesq approximation. The linear equations that govern 
an infinitesimal disturbance of the initial quiescent layers with temperature 
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profile p = - z are as follows (see Davis & Segell965, equations (2.9)-(2.12) with 
y = 6 = 5 = 0 and non-linear terms neglected): 

divV = 0,  (2.1) 

(2.2) (P-1 - A )  V - R t 8 k  + gradp = 0, 

(:--A) O-Raw = 0. (2.3) 

a 2  a 2  a 2  

ax2 ay2 az2' 
A = - + - + - .  Here 

P is the Prandtl number v / K ;  R is the Rayleigli number a(AT)gd3/~v,  which is 
assumed positive (the fluid is 'heated from below'); 6' is the deviation from the 
mean temperature T; and k = (0, 0, 1). 

The boundaries are all considered to be rigid and perfect heat conductors so 
that 

V = 6'= 0 on 1x1 = Q, 1x1 = Qh,, IYI = Qh2. (2.4) 

Equations (2.2) and (2.3) can be written in terms of a matrix operator D, which 
is defined by 

- as (2.6a) 

divV = 0. (2.6b) 

One advantage of writing the governing equations in this way is derived from the 
fact that D is self-adjoint using the boundary conditions (2.4) and equation 
(2.6b). That is 

('P . (D. Y)) = (V . AV + Rt(G6' + wB) + BAO) 

= (AT .  V + R$(G6' + ~ 0 " )  + (AB) 6') 

= { ( D . 9 ) . Y ) .  

Here Y e (u, v, w, O), and the inner product of two functions a and b is defined 
bv 

This self-adjointness guarantees that the stability boundary (marginal stability) 
is characterized by non-oscillatory motions (Sani 1963) (the principle of exchange 
of stabilities). The onset of convection is thus governed by the following equa- 
tions: 

(2.7a) 

divV = 0 (2.7b) 

In  general the system (2.7) is non-separable. An approximate solution may be 
with the boundary conditions (2.4). 

obtained using the Galerkin procedure. 
30-2 
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3. Galerkin procedure 
Let us consider a complete space Y of trial functions containing the following 

sets: 
Y, = {$n(x)), a set of scalar functions whose elements have continuous first 

and second partial derivatives with respect to x, y, z ,  and @n(x) = 0 on the 
boundary. 

Y2 = {+,(x)), a set of vector functions +n = (#::), &), @I), whose elements 
have continuous first and second partial derivatives with respect to x, y,z. 
div+, = 0 and+,(x) = 0 on the boundary. 

Y, = {pn(x)}, a set of scalar functions whose elements have continuous first 
partial derivatives with respect to x, y, x .  

An important consequence of the requirement div+, = 0 is that on all boun- 
daries of the box, the implicit condition that the normal derivative of the com- 
ponent of velocity normal to the boundaries is zero, is satisfied. For example, on 
a boundary defined by x = f. ih,, a/ay = 8/82 are tangential derivatives. Thus, 
the continuity condition implies that a/8x#$) = 0 011 boundaries where x = & @,. 
Similarly, both the conditions, a/ay&) = 0 on boundaries where y = +h2, 
and a/&,&) = 0 on horizontal boundaries, are exactly satisfied. In addition, if 
continuity were not satisfied exactly, the following approximate procedure would 
not necessarily yield upper bounds, nor would convergence be guaranteed. Let 
us represent V, 6’ and p as follows: 

00 

V =  C cn+n, 
n= 1 

m 

n= 1 
0 = C dn$w 

W 

P = C enPn- 
n=l 

We shall substitute the first N terms of these into equation (2.7). As this is not 
an exact solution, there will be an error. We require that this error be orthogonal 
to each four-vector 

and obtain the linear algebraic equations: 

The pressure term vanishes by virtue of the facts that divqji = 0 and& is zero 
on the boundary. Equations (3.1) have non-trivial solutions if and only if 
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where U ,  V ,  W ,  2 are N x N matrices defined as follows: 

469 

Simplification of U and Z has been obtained by using integration by parts and 
the boundary conditions (2.4). The critical Rayleigh number R, is the smallest 
positive value of R for which det A = 0 as N -+ co (see appendix A for details of 
computation). 

It is worth noting that the Galerkin procedure being used is equivalent to a 
Rayleigh-Ritz procedure using the following maximum principle due to Sani 
(1963): 

2 (Ow) 
(VU. vu + v v  .vv  f v w .  v w  f vO. V@ 

R;i = max 
$G 

with divV = 0. 

The equivalence is due to the self-adjointness of D. Consequently, we expect that 
as we increase N (the number of terms in the Galerkin approximation), the 
upper bound of R, will decrease monotonically and converge to the exact R, of 
(2.7). 

One point concerning our approach should be emphasized. By using the full 
system of equations rather than a higher order equation obtained by cross- 
differentiation and elimination, our trial functions need have only two derivatives 
close to the exact solution. This should promote rapid convergence. 

Finite roll approximation 

In the problem of a heated infinite horizontal fluid layer, linear theory fixes 
the critical overall wave-number but does not otherwise distinguish the x-y 
dependence of the eigensolution. The linear problem may thus be solved in the 
simplest case, the roll cell. A general solution can then be obtained by super- 
position. A roll is a cell with only two non-zero velocity components dependent 
upon two spatial variables, uniform and of infinite extent in the third direction. 
With a fully enclosed geometry, we can define finite rolls which have only two 
non-zero velocity components but by necessity are dependent upon all three spatial 
variables. This dependence guarantees that all boundary conditions can be satis- 
fied. We will term a k i t e  roll afinite x-roll when its axes are parallel to the y-axis 
(zero y component of velocity) and similarly a Jinite y-roll is one whose axis 
is parallel to the x-axis. As a f i s t  step, we shall consider trial functions which 
have the properties of finite rolls. (For a discussion of the physical possibility of 
having a flow with only two non-zero velocity components existing in a fully 
confined domain, see 9 5.)  All trial functions must satisfy the boundary conditions 
and the continuity equation exactly. For the construction of any number of 
finite x-rolls and finite y-rolls, refer to appendix B. 
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Let us fix our attention on K finite y-rolls with regard to the dependence of 
R, upon (h,, h,). Two types of behaviour become apparent. 

Type I .  Let us fix h, and allow h, to vary for K finite y-rolls. A typical stability 
curve is shown in figure 1. The shape is qualitatively similar t o  the stability curve 
for the infinite layer in that there is a minimum at a finite value of h,. 

- 
h, 

FIGVRE 1. Qualitative behaviour of K finites y-rolIs, R, versus h, with h, fixed; 
type I dependence. 

- 
h 

FIGURE 2. Qualitative behaviour of K finites y-rolls, R, versus h, with h, fixed; 
type I1 dependence. 

Type I I .  Let us fix h, and allow h, to vary for K finite y-rolls. A typical stability 
curve is shown in figure 2. The curve is monotone decreasing and very rapidly 
approaches a positive value as h, -+ co. 

These behaviours will be discussed on physical grounds in 3 5. 
Our criterion for numerical convergence is that if the addition of five con- 

secutive trial functions decreases the approximate R, by less than 1%, we ter- 
minate. We have found that N = 10 is sufficient in all cases examined. 

Using the fact that R,(a,p) for K finite x-rolls equals R,(P,a) for K finite y- 
rolls (they are identical physically), we can construct stability curves for the box 
as follows. Let us fix h,, say, near h, = 1. Let us approximate K finite y-rolls 
and compute R, as a function of h, for K = 1 , 2 , 3 , .  . . Each curve is qualitatively 
similar to that in figure 1 but as K increases, the minima lie below and to the right 
of those with smaller K .  These curves are denoted by ly,  2y, etc., in figure 3. 
Let us now construct K finite x-rolls and compute their stability curves. Figure 2 
illustrates typical behaviour for each K.  When K = 1 and h, < h,, the resulting 
curve has a negative slope of smaller magnitude than that for one finite y-roll. 
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Since the computed Re's for both cases must be equal when h, = h, (the same 
physical situation), one finite x-roll is preferable (has a lower R,) to one finite 
y-roll when h, < h,. In  analogous fashion, as finite x-rolls with K 5 2,3, ... are 
considered, curves with negative slopes of smaller magnitude but with larger 
asymptotes for large h, (i.e. displaced upwards), are encountered as K increases. 
These are labelled lx, 2x, etc., in figure 3. As h, is decreased further, finite x-rolls 

FIGURE 3. Qualitative behaviour of composite stability curve with h, fixed. R, versus h,, 
m, and m, denote .n finite z-rolls and m finite y-rolls respectively. The darkened portion is 
the minimum critical Rayleigh number. 

with larger K (flatter curves which are higher at  large h,), intersect and become 
the lowest of the curves for an interval of h,. These x-rolls in turn yield to x-rolls 
with larger K for smaller h,. That curve, which consists at h, of the lowest per- 
missible value of R, of all these curves, is the curve of the critical Rayleigh number 
for that h,. In  figure 3, this curve is darkened. This procedure has been used to 
construct appropriate stability curves for various fixed hi's. These stability 
curves are given in figures P 1 2 .  These differ from one another qualitatively in 
the following way. When h, is sufficiently large (approximately greater than 1.75), 
one finite roll is never preferred and the lowest K allowable is K = 2. Similarly, 
when h, > 2.9, K = 3 is the smallest allowable K .  These situations are clearly 
shown in figure 13. 

Remark. For h, fixed and h, sufficiently large, the curve for K finite x-rolls 
clearly falls below that for K finite y-rolls. For h, > h,, however, this curve is 
always above that for K finite y-rolls for various other K’s. For h, < h,, the re- 
verse is true; K finite x-rolls for some K always have stability curves below those 
for any number of finite y-rolls. Thig is the reason we predict finite rolls with 
axes parallel to the shorter side of the box. 

More general approximations 

Let us now consider trial functions which approximate general three-dimensional 
flows rather than merely finite rolls. An arbitrary one is Y = (u, v, w, 8) with 
u, + vl/ + w, = 0. A function Q can be found such that Y, = (u, 0 , Q  el), Y, = 

(0, v, w - Q, 8,) with u, + Qz = 0 and 8, + 8, = 8, and all boundary conditions are 
satisfied. Clearly, Y1 + Y, = Y and both (u, 0, Q) and (0, v, w - Q) are divergence- 
free. Thus, a general approximate solution can be written as a sum of two approxi- 
mate Jinite rolls. 
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Our problem has been reduced to the superpositions of finite rolls. Consider 
the approximate solution Y = a,Y,+a,Y, where Yl and Y, are finite rolls. 
Let Re, be the R, obtained by letting Y = Y, and R,, be that R, when Y = Y,. 
The approximation scheme selects R, = R,, and a, = 0 if Re, > RCZ or it selects 
Re = Re, and a, = 0 if Re, > R,, (within numerical accuracy). No mixture is 
possible unless Rcl = RCZ in which case finite amplitude effects make the selections. 
We thus may consider finite rolls individually (as we did in the last section) and 
obtain results for the full three-dimensional problem. 

4. Results 
A check of our numerical results is possible. Velte (1964) has computed R, 

using a finite difference and variational technique for the case of a two-dimen- 
sional channel. For a channel of square cross-section he obtained R, = 5030 in 
association with a single (not finite) roll. A single finite x-roll with h, = 1 and h, 
large would be a proper comparison. When h, = 10 instead of infinity, we get 
R, = 5035. Since with h, fixed and h, varying a finite x-roll displays the type I1 
dependence (monotone decreasing), when h, -+ 03, the two results agree quite 
closely. Stability curves for h, constant, i.e. R,(h,, 73,) versus h,, are shown in 
figures 4-12.  Figure 3 shows schematically that when h, N 1 and h, is increased 
beyond h, = h,, finite y-rolls are preferred fist with K = 1, and then with subse- 
quent transition to K = 2, K = 3, etc. When h, is decreased below h, = 1, finite 
x-rolls are preferred again first with K = 1, then K = 2, etc. In the special 
case h, = h,, any linear combination of one finite x-roll with one finite y-roll is 
allowable. The behaviour shown in figure 3 is typical. In  all cases (squares 
excepted), we find that the preferred mode (according to linear theory) is some 
number of Jinite rolls with axes parallel to the short side. 

The stability curves obtained have kinks which typify problems having inde- 
pendent stability curves. An example is the heating from below of an infinite 
rotating fluid layer where an overstability is possible (see Chandrasekhar 1961, 
p. 97, figure 21). 

To see that our problem is inherently three-dimensional we need only note the 
following. If we view a two-dimensional channel as the limit of a three-dimen- 
sional box as, say, h,+co, the critical Rayleigh number according to our results 
is attained with many finite y-rolls (for h, = 1, R, < 3500 from figure 7). An 
analysis encompassing only two spatial dimensions, however, can describe only 
the most preferred number of (non-finite) x-rolls. Hence, Velte obtains R, = 5030 
for a single x-roll with h, = 1. 

From figures 4-12, one can construct a map of the preferred mode according 
to linear theory (see figure 13). The figure is symmetric with respect to the 
line hl = h,. The numbers appearing in the various zones denote the preferred 
number of finite rolls contained in the box. In  addition, we have drawn curves of 
constant R,. 

One can illustrate the use of the diagram by following a solid vertical line at, 
say, h, = 4. On this line, h, = 4 and h, varies. When h, is small, many finite 
x-rolls are preferred, K decreasing to four as h, increases to the line h, = h,. 
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FIGURE 4. Stability curve for h, = h,, any linear combination of  n. finite 2-rolls and y- 
rolls allowed, n. indicated. R, versus h,. 

FIGURE 5. Stability curve for h, = 0.25, mz and my denote n. finite 2-rolls and m finite 
y-rolls respectively. R, versus h,. 

2o I 
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h, 
FIGURE 6 
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FIGURE 7 

FIGURE 6. Stability curve for h, = 0.50, n.= and m, denote m finite x-rolls and rn finite 
y-rolls respectively. R, versus h,. 

FIGURE 7. Stability curve for h, = 1.0, nz and my denote n finite 2-rolls and m finite 
y-rolls respectively. R,  versus h,. 
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FIGURE 8. Stability curve for h, = 2.0, m, and m, denote m finite 2-rolls and m finite 
y-rolls respectively. R, versus h,. 

FIGVRE 9. Stability curve for h, = 3.0, n, and m, denote n. finite a-rolls and m finite 
y-rolls respectively. R, versus h,. 

h2 
FIGURE 10 

' 0  1 2  3 4 5 6 7 

h, 
FIGURE 11 

FIGURE 10. Stability curve for h, = 4.0, m, and my denote m finite x-rolls and m finite 
y-rolls respectively. R, versus h,. 

FIGURE 11. Stability curve for h, = $0, m, and my denote m finite x-rolls and m finite 
y-rolls respectively. R, versus h,. 
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As we cross this line, four finite y-rolls become preferred. As h, increases further 
only finite y-rolls are preferred with K increasing without bound. 

Koschmieder (1966) has remarked that ‘rolls [form] parallel to the short side, 
so [that] they preferred the direction where they could develop in their usual 
height to diameter ratio 1: l’, i.e. rolls of square cross-section. Figure 13 shows this 
to be the case when the depth is  the smallest dimension. Otherwise narrower cells are 
predicted. (Koschmieder’s h, and h, were of order 10.) 

6 

5 

1 

3 
h2 

2 

1 

0 
0 1 2 3 4 5 6  

1 
0 1 2 3 4 5 6  

h, hl 

FIGURE 12 FIGURE 13 

FIGURE 12. Stability curve for h, = 6.0, mc2 and my denote rn finite 2-rolls and m finite 
y-rolls respectively. R, versus h,. 

FIGURE 13. Map of preferred wave-number (as indicated) of finite rolls as a function of 
h, and h,. Dashed curves are of constant critical Rayleigh number. The figure is symmetric 
with respect to the line h, = h,. Finite 2-rolls are preferred below the line h, = h, and 
finite y-rolls above. Dotted lines are estimates of calculations which did not converge well 
numerically. 

Another interesting fact can be observed in figure 13. When the long side of a 
box is increased beyond twice the other, subsequent increases do not affect R, 
appreciably (although there are cell transitions). That is, a box whose lateral 
dimensions have a 2: 1 ratio is effectively co: 1 as far as the Rayleigh number is 
concerned (see comparison with work of Velte above). 

5. Discussion 
The inherently three-dimensional nature of the convection in a box gives rise 

to the two types of dependencies of R, upon (hl, h,) for finite rolls as given in 5 3. 
Type I occurs when a finite roll has its width varied and occurs for the same 

reasons as in the problem of an infinite layer. The critical Rayleigh number is 
attained as a compromise (Chandrasekhar 1961, p. 34) between the conflicting 
needs of viscous dissipation and release of potential energy. Narrow, tall cells 
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are inefficient because they dissipate large amounts of energy, while wide, flat 
cells are inefficient because a fluid particle must travel a, great horizontal distance 
before it can fall and release its potential energy. Hence, we obtain a stability 
curve which has a finite minimum corresponding to moderate-sized cells being 
preferred. 

Type I1 dependence is obtained when the length of a finite roll is varied. (This 
consideration is not present in the infinite layer where rolls have infinite length.) 
Since this variation does not materially change the length of the path of a fluid 
particle, the proximity of the walls at  the ‘ends’ of the cell influence Be mostly 
by affecting the viscous dissipation. The dissipation due to the end-walls is a 
small part of the total dissipation unless the finite roll is very short. The stability 
curve is a monotone decreasing function of the axial length of the finite roll and 
approaches a finite positive value of R, rapidly. 

In this study we have considered trial functions with two non-zero velocity 
components which represent finite rolls and have found that superpositions of 
these did not lower Re or change the eigenfunction (within numerical accuracy). 
Let us consider physically the fact that a flow with only two non-zero velocity 
components in a three-dimensional domain seems to be preferred. At first glance 
one might consider the local behaviour of a finite roll near an end, as being similar 
to the situation of placing a rigid flat plate normal to the axis of a rotating flow 
(Bodewadt 1940). Bodewadt’s problem, which yields an exact solution to the 
Navier-Stokes equations, illustrates the generation of a secondary axial flow 
which transforms the initially plane flow into a three-dimensional one. Two facts 
make the analogy with our problem inappropriate. 

(i) The Bodewadt solution is a similarity solution of the non-linear equations 
of motion. The induced axial flow is a non-linear phenomenon. 

(ii) The ‘boundary-layer thickness’ in the Bodewadt problem is ( V / W ) ~  where Y 
is the kinematic viscosity and w is a local angular velocity. Even if we think of 
finite (but small) amplitude convection, the boundary layer will fill the whole 
box. Thus since the axial velocity must vanish at the end and IwI is very small, 
the axial flow is very small. (Experiments seem to  produce finite rolls.) 

The linear stability problem considered in this paper is a slow flow whose 
correct local behaviour, near the end of a finite roll, can be modelled by a Stokes 
flow solution similar to that in Schmieden (1928), where the pressure is constant, 
the viscous forces are in balance, and the axial velocity is zero. 

Thus the finite rolls approximate an exact solution which has a zero axial 
velocity or a negligibly small evenly distributed one. There are no sharp transi- 
tion regions (boundary layers) near the ends. The speed of a particle approaches 
zero gradually as one nears an end. 

When one solves the stability problem for a heated, infinite layer with the 
three sets of boundary conditions (1) free-free, (2) fixed-free, and (3) fixed-fixed, 
one notices that the preferred wavelength according to linear theory decreases 
from (1) to (2) to (3). The reason is that the more restrictive non-slip condition 
magnifies the viscous dissipation. For a convective cell to be sustained subject to 
this larger dissipation, a fluid particle must release its potential energy more 
efficiently. Hence, a narrower cell is predicted. In  essence, our prediction of 
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finite rolls of cross-section smaller than square, when the depth is not the smallest 
dimension, has the same explanation. Consider finite x-rolls with h, fixed at, 
say, h, = 2 .  When h2 > 1, cells of roughly square cross-section are preferred. 
When h, is decreased, however, the viscous dissipation at the ends becomes im- 
portant and, in fact, for h, < 1, becomes the dominant portion. Convection is 
sust,ained only with more efficient potential energy release, i.e. narrower cells. 
This increased efficiency outweighs the increase in the dissipation due to narrow- 
ing, which is slight compared to that portion contributed at  the ends. Thus we 
see that for, say h, = 2 and h,+ 0, more and more finite x-rolls tend to appear. 

The basic assumptions in our analyses are that: (i) the walls are perfect heat 
conduct.ors; (ii) the fluid properties are constants and the Boussinesq equations 
are valid. 

Perfect heat conducting surfaces can be closely approximated in the laboratory 
although this condition does not describe well the conditions at  the lateral walls 
of Koschmieder's apparatus. 

Since the shape of the lateral walls of the box seem to determine the geometry 
of the convection cells in experiment, their influence is assumed to dominate over 
the small effects due to fluid property variations and 'non-Boussinesq-ness'. 
This assumption seems to be justified by our obtaining good agreement with the 
observations by Koschmieder. 

When in figure 13 (h,,h,) lies on a stability boundary or on the line h, = h,, 
linear theory predicts only an arbitrary linear combination of the relevant 
adjacent modes (those on either side of the curve). Finite amplitude effects must 
then determine the preferred mode. 

The author wishes to express his gratitude to Dr Michael Sherman, Prof. 
R. S. Scorer, and Prof. J. T. Stuart for useful discussions and criticism and to Mr 
Richard Clasen and Mrs Margaret Ryan for invaluable aid with the numerical 
calculations. This work was supported by project RAND. 

Appendix A. Computation of R, 

matrix 
It can be shown that Re > 0 for the infinite layer. Assume Re > 0. Then the 

is non-singular and 

Therefore A is singular if and only if 

B-lA= ['i' 
is singular where I ,  is the N x N identity matrix. Also B-lA = I ,  - RBC where 

2-1 W 



478 Stephen H .  Davis 

Hence A is a singular if and only if R-9 is an eigenvalue of the matrix C ,  and R 
is finite and non-zero. Since C has an N-dimensional manifold of zero eigenvalues, 
R, is obtained as the reciprocal of the largest eigenvalue of the matrix 2-1 W U-1 V .  
This is an N-dimensional problem rather than a 2N-dimensional one and calcu- 
lations can be done accurately. 

Appendix B. Trial function 
Trial functions for 0 are taken of the form 

where (q, x2, z3) = (2, y, z ) ,  J is a fixed positive integer and the (gg,)j) are real 
numbers. Similarly the+, = (#$, @), q52)), the trial functions for V, have the 
same form and additionally satisfy div+, = 0. In  both cases +, and vanish on 
all boundaries. 

The above forms and restrictions give us great freedom in the choice of the 
coefficients so that we are able to approximate a configuration of, say, K finite 
2-rolls as follows: 

(i) $2) = 0 at ( K -  1 )  points of {XI 1x1 < +hl}, 
(ii) 4:;) = 0, 
(iii) @) i: 0 in {zI IzI < 4) (other dependences give higher Rayleigh numbers), 
(iv) lcr, has the same form as q5:) (but the condition a$Jaz = 0 at 1x1 = Q is 

(v) all trial functions are even in y (other dependences give higher Rayleigh 
not required), 

numbers). 
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